Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Public Health ; 11: 1180932, 2023.
Article in English | MEDLINE | ID: covidwho-2281615

ABSTRACT

[This corrects the article DOI: 10.3389/fpubh.2021.636023.].

2.
BMJ Open ; 12(12): e065937, 2022 12 09.
Article in English | MEDLINE | ID: covidwho-2161860

ABSTRACT

OBJECTIVE: We analyse the impact of different vaccination strategies on the propagation of COVID-19 within the Madrid metropolitan area, starting on 27 December 2020 and ending in Summer of 2021. MATERIALS AND METHODS: The predictions are based on simulation using EpiGraph, an agent-based COVID-19 simulator. We first summarise the different models implemented in the simulator, then provide a comprehensive description of the vaccination model and define different vaccination strategies. The simulator-including the vaccination model-is validated by comparing its results with real data from the metropolitan area of Madrid during the third COVID-19 wave. This work considers different COVID-19 propagation scenarios for a simulated population of about 5 million. RESULTS: The main result shows that the best strategy is to vaccinate first the elderly with the two doses spaced 56 days apart; this approach reduces the final infection rate by an additional 6% and the number of deaths by an additional 3% with respect to vaccinating first the elderly at the interval recommended by the vaccine producer. The reason is the increase in the number of vaccinated individuals at any time during the simulation. CONCLUSION: The existing level of detail and maturity of EpiGraph allowed us to evaluate complex scenarios and thus use it successfully to help guide the strategy for the COVID-19 vaccination campaign of the Spanish health authorities.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination , Computer Simulation
3.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: covidwho-1953480

ABSTRACT

In the context of the new life-threatening COVID-19 pandemic caused by the SARS-CoV-2 virus, finding new antiviral and antimicrobial compounds is a priority in current research. Pyridine is a privileged nucleus among heterocycles; its compounds have been noted for their therapeutic properties, such as antimicrobial, antiviral, antitumor, analgesic, anticonvulsant, anti-inflammatory, antioxidant, anti-Alzheimer's, anti-ulcer or antidiabetic. It is known that a pyridine compound, which also contains a heterocycle, has improved therapeutic properties. The singular presence of the pyridine nucleus, or its one together with one or more heterocycles, as well as a simple hydrocarbon linker, or grafted with organic groups, gives the key molecule a certain geometry, which determines an interaction with a specific protein, and defines the antimicrobial and antiviral selectivity for the target molecule. Moreover, an important role of pyridine in medicinal chemistry is to improve water solubility due to its poor basicity. In this article, we aim to review the methods of synthesis of pyridine compounds, their antimicrobial and antiviral activities, the correlation of pharmaceutical properties with various groups present in molecules as well as the binding mode from Molecular Docking Studies.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Pandemics , Pyridines/chemistry , Pyridines/pharmacology , SARS-CoV-2
4.
International Journal of Molecular Sciences ; 23(10):5659, 2022.
Article in English | MDPI | ID: covidwho-1857467

ABSTRACT

In the context of the new life-threatening COVID-19 pandemic caused by the SARS-CoV-2 virus, finding new antiviral and antimicrobial compounds is a priority in current research. Pyridine is a privileged nucleus among heterocycles;its compounds have been noted for their therapeutic properties, such as antimicrobial, antiviral, antitumor, analgesic, anticonvulsant, anti-inflammatory, antioxidant, anti-Alzheimer's, anti-ulcer or antidiabetic. It is known that a pyridine compound, which also contains a heterocycle, has improved therapeutic properties. The singular presence of the pyridine nucleus, or its one together with one or more heterocycles, as well as a simple hydrocarbon linker, or grafted with organic groups, gives the key molecule a certain geometry, which determines an interaction with a specific protein, and defines the antimicrobial and antiviral selectivity for the target molecule. Moreover, an important role of pyridine in medicinal chemistry is to improve water solubility due to its poor basicity. In this article, we aim to review the methods of synthesis of pyridine compounds, their antimicrobial and antiviral activities, the correlation of pharmaceutical properties with various groups present in molecules as well as the binding mode from Molecular Docking Studies.

5.
Comput Biol Med ; 139: 104938, 2021 12.
Article in English | MEDLINE | ID: covidwho-1525745

ABSTRACT

As long as critical levels of vaccination have not been reached to ensure heard immunity, and new SARS-CoV-2 strains are developing, the only realistic way to reduce the infection speed in a population is to track the infected individuals before they pass on the virus. Testing the population via sampling has shown good results in slowing the epidemic spread. Sampling can be implemented at different times during the epidemic and may be done either per individual or for combined groups of people at a time. The work we present here makes two main contributions. We first extend and refine our scalable agent-based COVID-19 simulator to incorporate an improved socio-demographic model which considers professions, as well as a more realistic population mixing model based on contact matrices per country. These extensions are necessary to develop and test various sampling strategies in a scenario including the 62 largest cities in Spain; this is our second contribution. As part of the evaluation, we also analyze the impact of different parameters, such as testing frequency, quarantine time, percentage of quarantine breakers, or group testing, on sampling efficacy. Our results show that the most effective strategies are pooling, rapid antigen test campaigns, and requiring negative testing for access to public areas. The effectiveness of all these strategies can be greatly increased by reducing the number of contacts for infected individual.


Subject(s)
COVID-19 , Humans , Incidence , SARS-CoV-2 , Spain/epidemiology
6.
Molecules ; 26(19)2021 Oct 04.
Article in English | MEDLINE | ID: covidwho-1463767

ABSTRACT

Antimicrobial resistance was one of the top priorities for global public health before the start of the 2019 coronavirus pandemic (COVID-19). Moreover, in this changing medical landscape due to COVID-19, finding new organic structures with antimicrobial and antiviral properties is a priority in current research. The Biginelli synthesis that mediates the production of pyrimidine compounds has been intensively studied in recent decades, especially due to the therapeutic properties of the resulting compounds, such as calcium channel blockers, anticancer, antiviral, antimicrobial, anti-inflammatory or antioxidant compounds. In this review we aim to review the Biginelli syntheses reported recently in the literature that mediates the synthesis of antimicrobial compounds, the spectrum of their medicinal properties, and the structure-activity relationship in the studied compounds.


Subject(s)
Anti-Infective Agents/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chemistry Techniques, Synthetic/methods , Drug Discovery , Drug Resistance, Microbial , Humans , Models, Molecular , Pyrimidines/chemistry , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
7.
Front Public Health ; 9: 636023, 2021.
Article in English | MEDLINE | ID: covidwho-1167385

ABSTRACT

This work presents simulation results for different mitigation and confinement scenarios for the propagation of COVID-19 in the metropolitan area of Madrid. These scenarios were implemented and tested using EpiGraph, an epidemic simulator which has been extended to simulate COVID-19 propagation. EpiGraph implements a social interaction model, which realistically captures a large number of characteristics of individuals and groups, as well as their individual interconnections, which are extracted from connection patterns in social networks. Besides the epidemiological and social interaction components, it also models people's short and long-distance movements as part of a transportation model. These features, together with the capacity to simulate scenarios with millions of individuals and apply different contention and mitigation measures, gives EpiGraph the potential to reproduce the COVID-19 evolution and study medium-term effects of the virus when applying mitigation methods. EpiGraph, obtains closely aligned infected and death curves related to the first wave in the Madrid metropolitan area, achieving similar seroprevalence values. We also show that selective lockdown for people over 60 would reduce the number of deaths. In addition, evaluate the effect of the use of face masks after the first wave, which shows that the percentage of people that comply with mask use is a crucial factor for mitigating the infection's spread.


Subject(s)
COVID-19/transmission , Computer Simulation , Social Networking , Algorithms , COVID-19/epidemiology , COVID-19/prevention & control , Cities , Communicable Disease Control , Epidemics , Humans , Masks , Quarantine , Seroepidemiologic Studies , Spain , Travel
SELECTION OF CITATIONS
SEARCH DETAIL